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Abstract − In sequential learning tasks artificial distributed neural networks forget 
catastrophically, that is, new learned information most often erases the one previously 
learned. This major weakness is not only cognitively implausible, as human gradually 
forget, but disastrous for most practical applications. An efficient solution to catastrophic 
forgetting has been recently proposed for backpropagation networks, the reverberating 
self-refreshing mechanism: when new external events are learned they have to be 
interleaved with internally-generated pseudo-events (from simple random activations) 
reflecting the previously learned information. Since self-generated patterns cannot be 
learned by a same backpropagation network, because desired targets are lacking, this 
solution used two complementary networks. In the present paper it is proposed a new 
self-refreshing mechanism based on a single-network architecture that can learn its own 
production reflecting its history (i.e., a self-learning ability). In addition, in place of 
backpropagation, widely considered to be not biologically realistic, a more plausible 
learning rule is used: the deterministic version of the Contrastive Hebbian Learning 
algorithm, or CHL. Simulations of sequential learning tasks show that the proposed single 
self-refreshing memory has the ability to avoid catastrophic forgetting.  
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1. Introduction 
  

Artificial neural networks with highly distributed memory forget catastrophically [1-3] when faced with 
sequential learning tasks: new learned information most often erases the one previously learned. This major 
weakness is not only cognitively implausible, as human gradually forget, but disastrous for most practical 
applications. However, distributed neural systems are extensively used in concurrent learning, mainly for their 
remarkable ability to generalize and their graceful degradation. In distributed memory, experienced events share 
the same set of connection weights, which is at the root of the fundamental property of generalization, but is also 
precisely the root cause of catastrophic interference: in sequential learning tasks new learned information 
modifies the same set of weights that represents the previously learned information. Numerous authors have 
developed ways to overcome this stability-plasticity dilemma (for a review see [4]). The simplest way to avoid 
catastrophic forgetting is to 'rehearse' the old items as new learning occurs, which amounts to transform 
sequential learning into concurrent learning. This trivial solution is uninteresting for practical applications and 
unrealistic for human memory since it requires permanent access to all previously experienced events. Another 
solution, not requiring permanent access to old events, is to use a pseudorehearsal mechanism in place of a true 
rehearsal process, that is, when new external patterns are learned they are interleaved with internally-generated 
activity patterns. These entities, called pseudopatterns, self-generated by the network from just random 
activations, reflect (but are not identical to) the previously learned information. It has now been established [5-8] 

LETTER



Sequential Learning in Distributed Neural Networks without Catastrophic Forgetting                           B. Ans 
 

 28

Figure 1. Network architecture. Large arrows stand for modifiable connections between fully connected layers.
The input and output layers are made up of WTA clusters.  

that this pseudorehearsal mechanism effectively eliminates catastrophic forgetting. In its most efficient 
implementation [6,8], the pseudorehearsal mechanism uses a reverberating process where pseudopatterns are 
attractor patterns generated from multiple reverberations within a recurrent part of the network. This 
reverberating self-refreshing mechanism was also generalized [9,10] to allow learning of multiple temporal 
sequences without catastrophic interference.  

The above cited papers have in common the use of the backpropagation learning algorithm and a 
dual-network architecture in which two complementary networks exchange pseudopatterns. Two networks were 
needed because a single associative network cannot learn self-generated outputs (pseudopatterns) since the 
desired target outputs, required in error gradient descent algorithms, are lacking. The main objective of the 
present paper is to propose a new self-refreshing mechanism based on a single-network architecture that can 
learn its own production reflecting its history. In addition, since the backpropagation learning algorithm is 
widely considered to be not biologically realistic, it is shown that this single self-refreshing memory can 
sequentially learn, without catastrophic forgetting, using a more plausible learning rule: the deterministic version 
of the Contrastive Hebbian Learning algorithm, or CHL [11,12], formally equivalent to backpropagation [13]. 
Indeed, a crucial feature of CHL is its biological plausibility as it is a Hebbian-type learning algorithm, relying 
on only local pre- and postsynaptic activities locally available. 
 

2. The Single Self-Refreshing Memory  

Figure 1 shows the architecture of an artificial neural network whose task is to learn to associate a set of 
pattern pairs (input X, target Y) by using the CHL learning algorithm; in the figure large gray arrows stand for 
modifiable connections between fully connected layers (every unit of a given source layer is connected to all 
units of the layer pointed out by the arrow). The input and output layers are made up of Winner Take All (WTA) 
clusters of units and can take two working states. When they work according to the state 'On', the units are 
competing within each cluster: the unit that gets the larger primary output, the 'winning' unit, has its activity set 
to one, while all other units are set to zero. When these layers work in the state 'Off ', there is no competition 
within clusters. Furthermore, once in the state 'On', a layer remains clamped in the contrasted activity reached by 
its clusters (i.e., remains insensitive to changes in its input activation) until it is switched to the unclamped state 
'Off '. The network comprises also one hidden layer containing units without mutual links. As usual, at each 
computing step of the network activity, the output of every unit is obtained by applying the standard sigmoid 
function σ(a) = 1/(1 + exp(– a)) to its total input activation, a, computed as the sum of all its inputs weighted by 
the corresponding connection strengths (including a modifiable bias  weight). For the input and output layers, 
this unit output activity is the primary output computed only from modifiable connectivity, that is, when clusters 
work in the non-competing state.  

One CHL learning pass, related to one training presentation of a given associative pair (X,Y), requires two 
successive phases. In the first 'minus' phase, the input part X is presented alone to the input layer while the output 
layer is free, that is, is working under the unclamped state 'Off '. The input layer is forced by the external activity 
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X and enters in the clamped state 'On' whose the only nonzero components are those corresponding to the 
winning units of its clamped WTA clusters. To simplify the following, though unnecessary, the external input 
patterns X (and also targets Y) will be identical to vectors of 0 and 1 complying with the WTA cluster structure. 
The clamped input layer activity X is propagated through the network and, as the output layer is not clamped, the 
hidden and output layer activities evolve freely as computing iterations progress between these two layers. In the 
subsequent 'plus' phase, the corresponding target part Y of the current processed pair (X,Y) activates and forces 
the output layer to take its activity pattern, and this layer enters in the clamped working state 'On'. Since the input 
layer remains clamped during this phase, only one additional computing step is required to get the new resulting 
hidden layer activity that no longer changes.   

Practically, a fixed number, noted RHY, of computing iterations between layers H and Y is taken to delimit 
the 'minus' phase duration. At the end of this phase, the units of layers H and Y have reached activities denoted 

−
jh  and −

iy ,
 
respectively. When the 'plus' phase occurs, these activities shift to new values denoted +

jh  and 
+
iy , respectively ( +

iy  being the elementary components of the external target Y). After each presentation of a 
pair (X,Y), comprising both the 'minus' and 'plus' phases, the modifiable connection weights of the network are 
then updated. The connection weight, denoted ijw , from unit j of layer H to unit i of the output layer Y is updated 

according to the CHL learning rule: )( −−++ −=∆ iijiij hyhyw α , where α is the learning rate. Notice the Hebbian 
part and the anti-Hebbian part of this rule and its symmetric form implying exactly the same weight change for 
the reverse connection ijw , from layer Y to layer H. As this rule preserves any existing weight symmetry, the 

weight jiw  is simply taken the same as the weight ijw (a small amount of weight decay actually would work to 

symmetrize initially asymmetric weights [12]). The connection weight jkw  from unit k of layer X to unit j of 
layer H is updated according to the same rule, but with a learning rate β ≠ α. Since the layer X units maintain the 
same clamped values, noted xk , during the two activation phases (xk being the elementary components of the 

external input X), the previous rule for the X to H connectivity simplifies to kijjk xhhw )( −+ −=∆ β . It was shown 
[13] that the CHL algorithm could be considered as equivalent to the backpropagation algorithm if in particular 
the activity vector from layer Y to layer H were reduced by a multiplicative factor, denoted γ, before activating 
layer Y, which also implied to set the learning rate β= α/γ. In parallel to the previous CHL algorithm that 
implements the (X,Y) mapping, one current learning pass includes also the updating of the connection weights 
from the input layer X to itself according to a standard error correction rule: ∆wkl =λ( xk − pk ) xl , where λ is the 
learning rate, xk and xl are the clamped post and presynaptic activities (binary values, 0 or 1), and pk denotes the 
computed output activity of unit k, that is, the real-valued activity computed only from the modifiable feedback 
connections (X,X). The modifiable bias weights of all the network units are also updated, simply making equal to 
one the presynaptic activities in learning algorithms. 

Training a set of associations consists of presenting it to the network during a number of learning epochs, 
each of them comprising one learning pass for every associative pair taken at random within the set (concurrent 
learning). During a test phase, the previously processed inputs X are presented alone to the network input layer 
and it is checked the ability to produce over the output layer the expected associated targets Y. In test phases, the 
input layer X is permanently clamped in the state 'On' and the output layer works first in the unclamped state 'Off 
', during the same number as above, RHY , of computing iterations between layers H and Y, until it shifts to the 
state 'On' for which its competing WTA clusters give the clamped output. It is to be noticed that, since the input 
layer is always clamped in learning and test phases, its feedback modifiable connectivity has no influence on the 
network performance, and is in fact of no use in a standard concurrent learning of a set of associations (X,Y). 
However, in cases of sequential learning of distinct sets of associations, one after the other, the catastrophic 
forgetting problem will occur, that is, memory of previously learned sets will be erased when new sets are 
learned. And it is precisely to avoid this problem that the feedback connectivity within the input layer was added, 
and now we are going to see why.   

A solution to maintain the network memory of previously learned external events when new ones are 
trained is to learn these latter interleaved with entities reflecting the former. These entities, called peudopatterns 
or pseudo-episodes in previous papers, and I call now pseudo-events (PE), consist of attractor patterns that are 
internally generated by the network from a random seed. How a single system can generate and learn a 
pseudo-event? First a random input seed activates briefly the network with input and output layers working 
initially in the unclamped state 'Off '. In the following simulations, the random input seed will be simply a 
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pattern of 0 and 1, each of theses two values being taken for every input unit according to a 0.5 probability (since 
WTA clusters units of the input layer are not competing, more than one unit may be active within a cluster). This 
random input activity is sent through the network and, in particular, is reverberated within the input layer X 
through its feedback connections during a number of computing iterations, denoted RXX (between layer X and 
itself). After this initial reverberating process, the input layer enters in the clamped state 'On', and the resulting 
contrasted binary pattern, denoted X̂ (now consisting only of the clamped winning units in the WTA clusters), 
continues to activate the hidden and output layers that evolve freely, during the same number, RHY, previously 
defined for computing iterations between layers H and Y. This constitutes the same 'minus' phase as above (for 
external inputs) of the learning algorithm except that it is related now to the internally generated and clamped 
pseudo-input X̂ . When the 'minus' phase ends, the output layer Y enters in the clamped working state 'On' 
resulting in a contrasted output pattern, denoted Ŷ

 
(now consisting only of clamped winning units within the 

output WTA clusters). This constitutes the same 'plus' phase as described above for external targets, except that 
it is related now to an internally generated and clamped pseudo-target Ŷ . One learning pass for a pseudo-event, 
that is, for a pair (pseudo-input X̂ , pseudo-target Ŷ ), uses exactly the same learning algorithm as for external 
associations (X,Y), including in particular the same error correction rule for the feedback connections from layer 
X to itself ( X̂ , X̂ ). In this way the self-refreshing memory mechanism is defined as follows: during learning of a 
new set of external associations, every learning pass related to an external input-target pair (actual event) has to 
be followed by a number, denoted NPE, of learning passes related to NPE pseudo-events internally generated by 
the network. Below we will show, on a simulation example, that this self-refreshing mechanism can avoid 
catastrophic forgetting during sequential learning. 
 

3. Simulations 
 
The network has to classify 50 input patterns over 5 categories simply coded by a network output layer 

made up of a single WTA cluster of 5 units in which the only one active unit represents one of the 5 target 
categories Y. The 50 category members X are coded in the input layer by 4 WTA clusters with also a single 
active unit among 5. For example, a given input pattern X = (00010 00001 10000 01000) is to be associated to 
the target category Y = (00100). The categories are arbitrary, which means that any category member X consists 
of clusters in which the single active unit is taken at random, with an associated target category Y coded by an 
active unit taken also at random within the output cluster (with the constraint that the 50 inputs are distinct 
patterns). In fact, the task of the network is not to learn this list of 50 associative pairs (X,Y) concurrently, but to 
learn sequentially the 5 consecutive distinct sets of 10 associations forming the whole list, which means that 
training a given new set begins once the previous one is completely learned to a given criterion.  

Initially, the modifiable weights of the network (with 25 hidden units) are set to random values (between 
-0.5 and 0.5 according to a uniform distribution) and the first set of item pairs (pairs 1 to 10) is trained (without 
self-refreshing) using the learning algorithms described above, until the following learning criterion is reached 
for all the 10 item pairs: for each of the five units belonging to the WTA cluster forming the output layer, the 
error between its activity computed by the network and the corresponding component of the expected target Y 
has to be less than 0.01 (this value being evaluated with the output cluster in the non competing state 'Off '). 
Then the four other item sets are sequentially learned, each in the same way as the first (i.e., completely learned 
until the 0.01 criterion), either without or with the use of the self-refreshing mechanism. The network parameters 
defined above are: γ = 0.05 for the factor reducing the backward activity from layer Y to layer H, α = 0.05, β= α/γ 
= 1, λ = 0.1 for the learning rates, RHY = 2 for the number of computing iterations between layers H and Y. In the 
case where the self-refreshing mechanism is working, RXX = 20 for the number of reverberating iterations (from a 
random seed within the input layer X) required to internally generate a pseudo-event, and NPE = 10 for the 
number of pseudo-events trained during each learning presentation of an actual (external) event.  

Once a given set of 10 items is completely learned, tests of retroactive interference are performed on each 
of the previous sequentially learned sets. In test phases, any input X presented alone is considered as correctly 
categorized if the network produces a corresponding output WTA cluster, in the competing state 'On', which is 
identical to the expected category target Y. The correctness of a given set is given by the percentage of correct 
outputs over the 10 item pairs of the set. After the first set of 10 item pairs was initially learned, an entire 
sequence that checks retroactive interference is performed as follow. Once the second set is learned (pairs 11 to 
20), the correctness of the first set is evaluated. Once the third set is learned (pairs 21 to 30), the correctness of 
the first and the second set are separately evaluated. And so on, until the fifth set being completely learned (pairs 
41 to 50), the correctness of each of the four previous sets are separately evaluated. This learning-test sequence 
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is done for two conditions: one without the use of the self-refreshing mechanism, the second with this 
mechanism at work. The results are shown in Figure 2 where each curve gives the percentage of correct outputs 
for both the current last learned set (i.e., 100%) and for each of the sets sequentially learned before. These 
percentages are obtained from 12 replications (each for the two conditions) performed with 12 distinct lists of 50 
item pairs to be learned and different random weights initializing the networks. It can be observed that without 
the use of the self-refreshing mechanism, retroactive interference is rather severe. In fact, from the third learned 
set, the previous ones suffer from catastrophic forgetting. Note that the chance level for a correct output is 20 % 
since the probability that a unit be correct by chance in a WTA cluster with 5 units is 1/5. On the other hand, 
when the self-refreshing mechanism is working, catastrophic forgetting is avoided and the global retroactive 
interference remains reasonable.  
 

4. Conclusion  
 
In contrast with earlier papers, in which two complementary networks were required to implement the 

self-refreshing mechanism avoiding catastrophic forgetting, I show here that it is possible to implement this 
mechanism within a single network that in addition learns with a more realistic learning rule (CHL) that the 
backpropagation algorithm. Future studies are needed to specify at a more formal level the precise nature of the 
pseudo-events entities and to evaluate the relative efficiency between dual and single network architecture as 
well as their relative appropriateness with regard to neurobiological and behavioral data or practical applications. 
It is to be noticed that the WTA clusters, not only put in concrete form the undefined notion of 'clamped' state 
often used in different learning algorithms (in particular in the standard version of the CHL algorithm), but also 
offer a means to produce internally generated targets allowing a single network to learn its own production, 
which is typically unachievable in standard gradient descent and CHL algorithms that require explicit external 
targets. This last property is fundamental because, additionally to the self-refreshing process, it confers also to 
the memory network a crucial self-learning ability, which, in particular, can account for frequency effects related 
to production without supervisor (for example, everyday reading of more or less frequent words without a 
teacher giving the desired pronunciation).   

Simulation results have shown that catastrophic forgetting could be eliminated within a neural architecture 
with only one distributed network. The residual retroactive interference mainly results from the arbitrary nature 
of the learned associative pairs and also from the rather small size of the learning network with therefore limited 
resources. If the associations to be learned were more structured and the network larger retroactive interference 
would be a lot lesser. However, some retroactive interference is the price to pay to save the ability to generalize, 
distinctive and crucial property of highly distributed networks in neural information processing. Moreover, with 
regard to human long term memory, some degree of gradual forgetting is tolerable. Interestingly about that, one 
can observe in Figure 2 that the earliest memorized set of events resists to forgetting better than the next ones 

Figure 2. Retroactive interference (percent correct outputs averaged on 12 replications) over sets of input-output
pairs sequentially learned before the last learned set. Without the self-refreshing mechanism, retroactive
interference is severe and, from the third learned set, the previous ones suffer in fact from catastrophic
forgetting. With the self-refreshing mechanism, catastrophic forgetting is avoided. 



Sequential Learning in Distributed Neural Networks without Catastrophic Forgetting                           B. Ans 
 

 32

when the self-refreshing mechanism is working. This simulation result can be compared, of course to some 
extent and at a very different scale, to behavioral data obtained on autobiographical memory across human 
lifespan [14] that present the same higher performance of reminiscence occurring for the early events 
experienced after the childhood amnesia period. Notice that, in the presented simulation, this phenomenon has to 
be attributed to the self-refreshing mechanism since, when this mechanism does not come into play, forgetting of 
the earliest memorized events is precisely at a maximum level. 
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