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Avoiding catastrophic forgetting by coupling two
reverberating neural networks

L'oubli catastrophique évité par couplage de deux réseaux
neuronaux réverbérants

'
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RESUME

Les procédures d’apprentissage de descente de gradient sont le plus souvent utilisées dans la modé-
lisation de réseaux neuronaux. Lorsque ces algorithmes (e.g., la rétropropagation) sont appliqués
4 des tiches d’apprentissage séquentiel, un défaut majeur, appelé oubli catastrophique (ou inter-
férence catastrophique), survient généralement : lorsqu'un réseau ayant déji appris un premier
ensemble d’items est ensuite entrainé sur un deuxi¢me ensemble d’items, alors I'information
nouvellement apprise peut complétement détruire celle antérieurement apprise. Pour éviter ce
défaut peu plausible, il est ici proposé une architecture 2 deux réseaux neuronaux ot les nouveaux
items sont appris par un premier réseau conjointement avec des pseudo-items internes provenant
d’un second réseau. Comme il est démontré que ces pseudo-items reflétent la structure des items
antérieurement appris par le premier réseau, le modele implémente ainsi un processus de rafrai-
chissement par 'ancienne information. Le point crucial est que ce mécanisme de rafraichissement
repose sur des réseaux neuronaux réverbérants qui n’ont besoin que de stimulations aléatoires pour
opérer. Le modele fournit ainsi un moyen de réduire d’'une manitre spectaculaire interférence
rétroactive tout en conservant la nature essentiellement distribuée de 'information et propose une
hypothese originale et plausible sur la manitre de « copier et coller » la mémoire distribuée au sein
d’une structure cérébrale vers une autre.

Mots clés : modéles connectionnistes de I'apprentissage et de la mémoire, oubli catastrophique,
réseaux neuronaux réverbérants, processus de ré-injection, pseudo-rafraichissesment

ABSTRACT

Gradient descent learning procedures are most often used in neural network modeling. When these algo-
rithms (e.g., backpropagation) are applied 1o sequential learning tasks a major drawback, termed cata-
strophic forgetting (or camstrophzc interference), generally arises: when a network having already
learned a first set of items is next trained on a second set of items, the newly learned information may
completely destroy the information previously learned. To avoid this implausible failure, we propose a
two-network architecture in which new items are learned by a first network concurrently with internal
pseudo-items originating from a second network, As it is demonstrated that these pseudo-items reflect
the structure of items previously learned by the first network, the model thus implements a refreshing
mechanism using the old information. The crucial point is that this refreshing mechanism is based on
reverberating neural networks which need only random stimulations to operate. The model thus

Note présentée par Michel Imbert
Note remise le 25 juillet 1997, acceptée apreés révision le 3 novembre 1997

*Correspondence and reprints

C. R. Acad. Sci. Paris, Sciences de la vie / Life Sciences 989
1997. 320, 989-997




B. Ans, S. Rousset

prowa’es a means to dramatically reduce retroactive interference while comerz/mg the essentzally distrib-
uted nature of mfbrmatzon and proposes an orzgmal but plausible means to ‘copy and paste’ a distrib-

uted memory from one place in the brain to anotber.

Key words: connectionist models of learning and memory, catastrophic forgetting, reverberating

neural networks, re-injection process, pseudo-rehearsal.

VERSION ABREGEE

Les procédures d’apprentissage de descente de gradient sont
couramment utilisées dans la modélisation des réseaux neu-
ronaux. Lorsque ces algorithmes sont appliqués 4 des tiches
d’apprentissage séquentiel, un défaut majeur appelé oubli
catastrophique (ou interférence catastrophique) survient
généralement : lorsqu’un réseau connexionniste ayant déja
appris un premier ensemble d’items est ensuite entrainé sur
un deuxi¢me ensemble d’items, alors 'information nouvel-
lement apprise peut complétement détruire celle antérieure-
ment apprise. Parmi les différentes voies qui ont été explorées
pour éviter ce défaut psychologiquement peu plausible, celle
récemment proposée par Robins apparait la plus promet-
teuse. En effet, cette approche permet de réduire 'ampleur de
Pinterférence catastrophique tout en conservant la nature dis-
tribuée de la représentation de l'information au sein des
réseaux, propriété essentielle requise pour conserver leur apti-
tude & généraliser.

Le principe de base de la méthode, appelée par son auteur
mécanisme de pseudo-répétition i balayage, est le suivant. Une
fois qu’un réseau a complétement appris un premier ensem-
ble d’items, il est ensuite stimulé par une activité aléatoire, ce
qui produit des pseudo-items dont un certain nombre sont
stockés dans une pseudo-base. Lorsque le réseau est ensuite
entrainé sur un nouvel ensemble d’items, il est parallelement
rafraichi par les pseudo-items de la pseudo-base, pseudo-
items qui sont censés refléter la structure de I'information
antérieurement apprise.

Cependant, deux critiques peuvent étre formulées 4 I'égard
de la précédente approche. La premiére est que le mécanisme
de rafraichissement n’est pas réalisé en termes connexionnis-
tes car la pseudo-base est en fait constituée par une simple
liste de vecteurs stockés localement 4 différentes adresses-
mémoire du calculateur utilisé pour les simulations. La
deuxieme critique est que la réduction attendue de l'interfé-
rence rétroactive est jugée A notre sens insuffisante dans les
simulations de tiches d’apprentissage séquentiel o les asso-
ciations 4 apprendre sont arbitraires. La présente note répond
donc 4 un double objectif. i) Construire une architecture
connexionniste permettant de réaliser le mécanisme de
pseudo-rafraichissement exclusivement en termes de « neu-
rones » et de « poids synaptiques ». ii) Proposer un processus
de traitement de I'information neurale permettant de captu-
rer d’'une maniére optimale la structure profonde de I'infor-
mation distribuée au sein des réseaux neuronaux, ceci afin de
réellement minimiser 'interférence rétroactive.

Concernant le premier point, nous proposons une architec-
ture constituée de deux réseaux neuronaux i couche cachée.
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Ces réseaux, notés NET1 et NET2, peuvent daris un premier
temps étre considérés comme de classiques réseaux unidirec-
tionnels, ot chaque unité d’entrée est connectée A toutes les
unités cachées, elles-mémes connectées 2 toutes les unités de
sortie. Le réseau NET, seul réceptif aux items externes, est
celui qui doit apprendre séquentiellement une premiére base
d’associations (Base A) puis une deuxi¢me base (Base B), les
associations étant constituées par des couples stimulus/
réponse. Une base est considérée comme apprise lorsque cha-
cun des stimuli qui la composent, présenté en entrée du
réseau, génere sur la couche de sortie la réponse désirée (ou
cible). Pour expliquer simplement le fonctionnement du sys-
teme, on se place dans une situation initiale ot NET1 a déja
appris complétement la Base A et ot NET2 est encore « vide »
(i.e., avec des poids de connexion aléatoires). Entre alors en
action un premier processus, Processus (I), dans lequel NET1
ne peut étre réceptif aux activations externes mais ott sa cou-
che d’entrée est constamment activée par une stimulation
aléatoire interne. La succession des patterns aléatoires d’entrée
et des sorties induites dans NET1 est continuellement trans-
mise au réseau NET2 qui est entrainé sur ces pseudo-asso-
ciations, les sorties générées par NET1 jouant le réle de
pseudo-cibles pour NET2. L’apprentissage au sein de NET?2
s'arréte lorsque entre en jeu un deuxiéme processus, Processus
(I1), dans lequel NET1 devient & nouveau réceptif aux acti-
vations externes, en 'occurrence aux items de la Base B. Clest
maintenant NET2 qui est continliment activé par une sti-
mulation aléatoire induisant une succession de pseudo-asso-
ciations qui sont transmises & l'autre réseau. NET1 est donc
simultanément entrainé sur les associations de la Base B et sur
les pseudo-associations provenant continuellement de NET?2,
pseudo-associations qui devraient refléter la Base 4 antérieu-
rement apprise par NET1. Le systeme réalise ainsi, mais cette
fois d’'une maniere exclusivement connexionniste, le méca-
nisme de pseudo-rafraichissement formulé par Robins.

Quant au second objectif de cette note, nous pensons qu’un
simple passage d’une activité aléatoire dans un réseau neu-
ronal unidirectionnel est largement insuffisant pour capturer
d’une manitre optimale I'information distribuée au sein des
poids de connexion. Nous proposons de substituer 2 la struc-
ture de NET'1 et NET2 une structure de type réverbérante,
oli, par rapport 4 celle précédemment décrite, la couche
cachée est de plus en connexion totale avec 'entrée. Une pre-
miére différence est que pendant les phases d’apprentissage
les réseaux apprennent non seulement des hétéro-associations
(stimulus/réponse ou pseudo-stimulus/pseudo-réponse) mais
aussi des auto-associations (stimulus/stimulus ou pseudo-sti-
mulus/pseudo-stimulus). Une deuxiéme différence, cruciale,
réside dans la manitre de générer des pseudo-associatioris.
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Lorsque I'un ou l'autre des réseaux regoit en entrée une acti-
vation aléatoire, I’activité induite doit préalablement se réver-
bérer un certain nombre de fois, entre les couches cachée et
d’entrée, avant que le couple entrée—sortie résultant soit
transmis A 'autre réseau pour apprentissage. Il est ainsi
attendu que ce processus de ré-injection multiple converge
vers les attracteurs du réseau, ce qui doit permettre une cap-
ture optimale de la structure profonde inscrite dans sa con-

nectivité, et donc conduire & un processus de pseudo-

rafraichissement beaucoup plus efficace.

Avoiding catastrophic forgetting with reverberating networks

Le comportement du systéme connexionniste proposé a éié
simulé A partir d’une tiche d’ apprentlssage séquentiel classi-
quement utilisée pour mettre en évidence I'oubli catastro-
phique dans le cadre de la rétropropagation. Les résultats
obtenus en utilisant le processus de réverbération montrent
clairement que l'interférence rétroactive peut étre pratique-
ment éliminée. En revanche, lorsque le processus de réver-
bération n’est pas utilisé, linterférence rétroactive reste
élevée et les apprentissages se révelent laborieux, voire
impossibles.

Introduction

Learning and memory processes in the field of neural
network modeling (or connectionism) are most often
achieved through one or another of several gradient des-
cent adaptive algorithms, of which the most popular and
widely used is the iterative and supervised learning proce-
dure called backpropagation [1]. Such algorithms are
generally used to associate input patterns to specified tar-
get output patterns. Typically, a set of input-target pairs
(the training base) is repeatedly presented to a connectio-
nist network and at each presentation (or iteration) of a
pair, the connection weights within the network are adjus-
ted so as to minimize the error between the output
actually computed by the network (in response to the
input) and the desired output pattern (the target provided
in each pair).

It is well-known that when gradient descent learning
procedures are applied to sequential learning tasks a
major drawback, termed catastrophic forgetting (or cata-
strophic retroactive interference), generally arises: when a
network having already learned a first set of items is then
retrained on a second set of items, the newly learned
information may completely destroy the information pre-
viously learned about the first set [2, 3]. Since this psy-
chologically implausible behavior is unacceptable for
models of human learning and memory, a number of
authors have explored ways of reducing the retroactive
interference in sequential learning tasks [2-15]. Solving
this problem is rather difficult because the distributed
character of represented information, essentially required
within networks to achieve good generalization, seems
incompatible with a weak interference level. In highly
distributed systems, knowledge representations about dif-
ferent learned items largely share the same connection
weights. When a new set of items is learned, the same
connection weights, which were already adjusted for pre-
viously learned items, will be modified again. This may
completely abolish memory of old information, giving
rise to the classical ‘stability—plasticity dilemma’ [15].

In the present note, we propose a neural network model
whose aim is to suppress catastrophic forgetting and dra-
matically reduce retroactive interference in gradient
descent algorithms. The backpropagation learning proce-
dure is used since it is extensively explored in the con-
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nectionist literature. However, our proposal also works as
well for other gradient descent learning algorithms as the
model is related to the distributed nature of representa-
tions and not to a specific learning algorithm.

Cafastrophic forgetting
in a sequential learning task

To illustrate catastrophic forgetting and demonstrate how
this implausible failure can be suppressed, the same the-
oretical example will be taken throughout this study. This
example is adapted from a sequential learning task clas-
sically used to highlight retroactive interference in con-
nectionist systems [2]. A first training base (base A) is
made up of 20 stimulus-response pairs, denoted (X,,, Y,),
withp =1, 2,... 20. A second training base (base B) is also
a list of 20 stimulus-response pairs, denoted (Xp, Zp), in
which each pair p is composed of the same stimulus X,, as
that of the corresponding p-pair in base A, but this time
associated with a new desired response Zét-Y Items X, Y
and Z are represented by distinct binary- valued pattern
vectors with 32 components chosen at random (with val-
ues 0 or 1 being equally likely). The three-layer neural net-
work model, shown in figure 1, has to sequentially learn
first the set of X-Y associations (base A) and next the set of
X-Z associations (base B). The network input layer is in
fact composed of two subsets of units, the first represent-
ing stimuli X, (32 input units with activation values of 0 or
1) and a second subset coding for an arbitrary contextual
pattern, denoted C. This context pattern serves to indicate
to the network (in learning and testing phases) whether
processing is related to the X-Y or to the X-Z list. The con-
text subset has five units: when the network is supposed to
work on base A, the contextual pattern vector, chosen
arbitrarily as C = C, = [10110], is sustained throughout
processing associations of type (X, C4) — Y, and when
processing is related to base B a second context pattern, C
= Cp = [10101], is maintained for referring to associations
of type (X,, Cg) = Z,,. Each stimulus and context input unit
is connected to alr units of a hidden layer (50 hidden
units), which are themselves connected to all of the 32
output units coding for response patterns Y, or Z,.
Learning within the network uses the standard back-
propagation. Each presentation of an input pattern (stim-
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Desired Response

(Target Y orZ) Output Units

Q0000

Hidden

D000
A LN

T Tnput Units T

Stimulus (X) Context (C)

Figure 1. The classical network architecture used in the sequential
learning task.

Each input unit is connected to all of the hidden units, which are
themselves connected to each output unit (gray arrows).

ulus X and context C) gives rise to activation, which is
propagated in the network, and next the connection
weights are modified so that the output actually calcu-
lated by the network is as close as possible to the desired
response pattern Y or Z. The learning rule governing
weight modification tends to minimize a given error func-
tion, which is classically based on the sum of squared dif-
ference between the computed output unit activity and
the corresponding elementary component of the desired
target vector. However, there are many possible choices
for the error function and throughout the present study the
‘cross-entropy’ function [16, 17] will be preferred to the
quadratic function. In all the following simulations the
classical logistic unit activation (with positive values and a
bias) will be used and the usual learning rule parameters
will take the following values: 0.01 for the learning rate
and 0.5 for the momentum term.

The network, where all the connection weights are ini-
tially chosen randomly (between -0.5 and 0.5 uniformly),
is first trained on base A associations ([X,, C4 — o),
which are repeatedly presented at random (the contextual
pattern C, being maintained). Learning is considered as
completed when the following criterion is reached: the
absolute value of the difference between the activity of
each output unit and the corresponding elementary com-
ponent of the desired response pattern Y has to be less
than or equal to 0.1 for all the base A associations. Once
this learning criterion is reached on the first base, the base
B associations ([X,, Cgl — Z,) are subsequently learned
using the same criterion.
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During the test phases, the behavior of the output units
is observed when an input pattern of type [X,, C,] or
[X,, Cpl is presented. In order to evaluate the network’s
ability to correctly reproduce the appropriate outputs (i.e.,
the targets) for a given set of inputs, a performance meas-
ure, called goodness [3], was adopted. Formally, if s;
denotes the activity generated over the output unitj and ¢;
the corresponding component of the desired response
pattern, then the goodness, denoted g, of a single asso-
ciation being tested is defined as:

i=L

1
g =72 (2-D@2s;=1)

i=1

where L is the number of output units. A goodness value
of 1 indicates a perfect match between the calculated out-
put and the desired response and a value of 0 indicates
chance performance. The mean goodness G of a base of
associations is simply the average of the individual good-
ness g related to the associations belonging to the base.

To show catastrophic forgetting, the network’s ability to
correctly reproduce the appropriate outputs for base A
inputs (the ‘old’ base already learned) is estimated at dif-
ferent points in the course of learning the ‘new’ base B.
Across all ten training cycles on the new base (one cycle
corresponds to the exposure of all the 20 stimulus—
response pairs of the base) the mean goodness G is cal-
culated for the old and the new base (20 individual good-
ness values g averaged in each case). The results in
figure 2 clearly show a severe destruction of the old base
A associations by the new ones being learned. This cat-
astrophic retroactive interference is even more manifest
when the network’s performance is estimated according
to a more behaviorally relevant, but less fine-grained, cor-
rectness measure. A response pattern generated by the
network will be considered as correct if each output unit
activity is ‘on the right side’ of 0.5, otherwise the response
is considered as incorrect. That is, for any target compo-
nent equal to 1, the corresponding output unit activity has
to be greater than 0.5, and for any target component equal
to O the related output unit activity has to be less than 0.5.
This contrasted correctness measure is generally consid-
ered as suitable because it is easy to conceive a post-
processing of the output layer activity (such as simple
threshold units), which would give only the binary values
0 and 1 in response to the network’s output activities
respectively less than and greater than 0.5. Using this con-
trasted correctness measure, catastrophic forgetting is
well-highlighted: tests performed on the old base give 0 %
correct responses from cycle 8 up to the end of learning
the new base, when within the same time the correct
response rate for the new base being learned is 0 % from
cycle 0 to cycle 22. It has to be noticed that catastrophic
forgetting cannot be attributed to limited network
resources since we intentionally took a high number of
hidden units with respect to the number and size of item
pairs to be processed.

C. R. Acad. Sci. Paris, Sciences de la vie / Life Sciences
1997. 320, 989-997



1 T l
h A—A—A—A—A—A—rr‘"""'
-4 A
09 st New Base
_A”
0.8 - Val
/"A
0.7 - Ve
7] /
3 A
S 06 - /
‘g 0.5 A/
&} . /
g \ A
S04 4
2 &\.
0.3 - / .l
A L}
02 - fu,
' LT Old Base
0.1 - pLLLL LT LTSy
'S
SReSESEISEERRERESS

Number of Cycles

Figure 2. Catastrophic forgetting in a sequential learning task.

The lower graph shows a dramatic decrease in the gean goodness
of a set of items previously learned by the network (old base) during
training (all ten cycles) on a new set of items (new base). The in-
crease in goodness for the new base in training is shown on the upper

graph.

A dual neural network for learning that
minimizes retroactive interference

Catastrophic interference can be eliminated by using a
rehearsal mechanism: the old information previously lear-
ned by a network has to be continually refreshed (i.e.,
retrained) during the learning of new information. This tri-
vial solution, requiring a permanent access to all events
on which the network was trained during its history, is
unacceptable when it is seen as the only solution for the
human brain. Indeed, humans in general have the ability
to learn new events without the complete abolition of
memory for old events, which however do not occur
again systematically for their consolidation. Nevertheless,
this potential solution is useful since it leads to the interes-
ting notion of pseudo-rehearsal recently proposed by
Robins [12, 13]. Keeping the same example as above, the
basic principle of the most efficient pseudo-rehearsal
mechanism, called by the author sweep pseudo-rehear-
sal, is the following one. Once learning of base A is com-
pleted and before base B learning begins, the network is
activated by a number of random input patterns, each
giving rise to a corresponding output pattern. These
input-output pairs are successively stored in a pseudo-
base, which is then considered as having captured some-
thing reflecting the base A associative structure implicitly
represented within the network. When training on base B
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occurs, the network is also concurrently trained on the
input-output pairs previously stored in the pseudo-base:
such a pair is seen as a pseudo-association, reflecting the
old base, in which the output term serves as a pseudo
desired target in learning. As usual, the real input-—target
pairs are chosen at random in base B and at the same time
the pseudo-input-target pairs are also randomly chosen in
the pseudo-base. In this mechanism, the determinant
parameters are the size of the pseudo-base and the ratio
between the numbers of real and pseudo-associations
conjointly trained (in the cited papers, these parameters
were usually set at 128 and 1/3, respectively). Learning
the second set is considered to be complete when the
learning criterion is reached for all the base B item pairs
(the pseudo-item pairs not being subject to a learning cri-
terion). If a third set of associations should be learned,
then the same process would be applied again: before
learning the new set, a pseudo-base has to be first built
up, hence capturing some representation of the A-B struc-
ture, and then the new set is trained in conjunction with
the A-B pseudo-information thus refreshed, and so on.
The sweep pseudo-rehearsal mechanism was applied to
several sequential tasks [12, 13] in the framework of stan-
dard backpropagation and the obtained results were
rather encouraging since they show a significant decrease
in catastrophic forgetting.

However, one question immediately arises with this
hybrid algorithm where the current pseudo-base consists
in fact of a set of distinct pattern vectors simply stored as a
list of computer memory addresses: how the pseudo-base
notion could be neurally implemented in the framework
of a pure connectionist architecture. A second crucial
question is concerned with how the deep structure of the
distributed information represented in the connection
weights of a neural system can be optimally captured.

The model

The connectionist architecture we propose to address
these two questions is outlined in figure 3. Although our
proposal would work on any sequential task, the same
example as before will be used to present the model. In
the figure, NET1 is a network that is trained on the exter-
nal input-target patterns from bases A and B, and NET2 is
a similar network but one that does not receive external
activations. Consider now, for the sake of simplicity, an
initial state of the whole architecture in which NET1 has
already learned base A and NET2 is still ‘empty’ (i.e., with
random connection weights). Assume that the neural sys-
tem then enters in a first processing procedure, denoted
process (1) in figure 3, in which NET1 cannot be receptive
to external activations but is continuously receiving over
its input layer a random activation from an internal noise
generator. The successive NET1 inputs and induced out-
puts are both constantly sent to NET2, which is conti-
nually trained on these pseudo-assaciations, NET1 inputs
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Figure 3. Functional diagram of the neural network architecture for
learning new events without forgetting old ones.

Process (I): a noise generator continually stimulates the NET1 net-
work in which information previously learned is continuously ex-
tracted and learned by a second network NET2.

Process (I1): when NETT1 is presented with new external events, it is
concurrently refreshed by internal information from NET2 reflecting
the old events previously learned by NET1. Information capture from
NET2 is performed as in process (I) solely on the basis of random
stimulations.

and outputs playing respectively the role of pseudo-inputs
and pseudo-targets for NET2. Learning within NET2 stops
when a second processing procedure, denoted process
(I, occurs, in which NET1 becomes receptive to external
activations and where NET2 is now continuously activa-
ted by the internal noise generator inducing a correspon-
ding output activity. As in process (1), but this time in the
opposite direction, NET1 is trained on the pseudo-asso-
ciations originating continuously from NET2 while NET1
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is also concurrently trained on external activations (i.e.,
the input-target pairs originating from base B). At this
stage, it is expected that NET2 can play the role of the
Robin’s pseudo-base: during process (i), NET2 should
capture some structure of the information previously sto-
red within NET1 (base A) and then, during process (1),
NET1, which is now learning new information (base B),
should be concurrently refreshed on something reflecting
the old information already stored (base A), thus avoiding
catastrophic forgetting in this sequential A-B learning
task. For several sequential tasks, as in the Robin’s
method, processes (1) and (1) should continue to work
alternatively. The fundamental difference between the
Robin’s method and our proposal is that the pseudo-
rehearsal mechanism can now be implemented accor-
ding to a whole neural network system.

With respect to the second point above, we think that
only a single pass of each random input pattern through a
feedforward network is largely insufficient to correctly
extract the information structure from its connection
weights. To address this point we propose to use, for both
NET1 and NET2, the network architecture shown in
figure 4. In comparison to the classical network in figure
1, connections have been added from the hidden layer to
the input layer: as previously, each hidden unit is con-
nected to all output units, but is now also connected to all
input units.

When one network is learning, the error function to
minimize will now not only be based on the error
between the calculated output and the output target but
also on the error between the computed activation from

Desired Response

Target Y orZ
(Target Y or 2) Output Units

Q0000

‘ Hidden
( OQOO--OO unis
00000 00000
T Input Units T

Stimulus (X) Context (C)

Figure 4. Architecture of a reverberating network.

With respect to the network in figure 1, which only implements het-
ero-associations, the hidden layer is furthermore fully connected to
the input layer, thus implementing also auto-associations.

C. R. Acad. Sci. Paris, Sciences de la vie / Life Sciences
1997. 320, 989-997




hidden units to input units and the current input pattern
also playing the role of a desired target. In short, connec-
tions from hidden units to output units implement hetero-
associations (external inputs—external targets or pseudo-
inputs—pseudo-targets) and those from hidden to input
units implement auto-associations (external inputs—exter-
nal inputs or pseudo-inputs—pseudo-inputs). It should be
noted that when NET1 or NET2 is in a learning situation
only a single pass of activity determines weight modifi-
cation. During this single step, the activity returned from
the hidden units back to the input layer is never re-
injected toward the hidden layer. In other words, learning
is still feedforward with no recurrence.

When we consider the situation where one non-learn-
ing network is transferring information toward the other

for training, the implementation of auto-association -

makes it possible to propose a new hypothesis on the way
one network can generate pseudo-associations. Each time
the random generator initializes the input layer of the non-
learning network, the activity returned from its hidden
units back to its input layer creates a new input unit activ-
ity, as an echo, which in turn is re-injected within the hid-
den layer, which in turn recreates a new echo over the
input units, and so on. After a number of re-injections
(which is a simulation parameter) during which activity
flows back and forth between the hidden and the input
layers of the network, the last echo generated on the input
units and the last resulting output pattern are both sent to
the other network for training. Thus, the basic functioning
principle of the neural dual-process, implementing learn-
ing with pseudo-rehearsal, is essentially the same as that
already described in figure 3. However, the crucial dif-
ference is that, for the network being currently emitting
pseudo-associations toward the other, the activity gener-
ated in response to each random pattern has to first rever-
berate inside the network before transmission. It can be
readily reasoned that the above re-injection process from
a random seed, which is expected to converge close to
network attractors, is much more suitable for capturing
the deep structure implicitly contained within a distrib-
uted memory than a single feedforward pass of activity.

Simulations

The A-B sequential learning task was simulated in the fra-
mework of the proposed dual-process system with two
reverberating networks. For all the following simulations,
we always started from an initial state of the system where
base A was already learned by the NET1 network (hetero-
associations and auto-associations trained up to the lear-
ning criterion equal to 0.1) and where NET2 is still empty
(random connection weights). In order to compare the
simulation results with those classically obtained in the
literature on feedforward networks, re-injections of input
activity were not used during testing phases. Only output
patterns resulting from one single pass of activity through
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the network were considered for calculating results, and
data were only computed for hetero-associations.

Initially the mean goodness of base A calculated on the
NET1 output units was equal to 0.948. When process (1)
occurs, the noise generator activating NET1 was simu-
lated by a sequence of binary-valued pattern vectors with
a size corresponding to that of the input layer. Thus, these
patterns have 37 components {with a value of 0 or 1) cho-
sen at random uniformly (graded values would work as
well). Each input from the random sequence reverberates
within NET1 and after a number of re-injections, denoted
R, the resulting input-output pattern is transmitted to
NET2 as a pseudo-input—pseudo-target pair. Following
this, the connection weights were modified using the
same learning procedure and parameters as those in
NET1. Within NET2, learning of the continual flow of
pseudo-associations originating from NET1 proceeded
until process () ended. In the simulations, process (I) was
maintained until the mean goodness computed on NET2,
with the real items already learned by NET1, was close to
that calculated on NETT1. In fact, in simulations with R =
10 re-injections, the mean goodness of base A in NET2
reached exactly the same value (0.948) as that in NETT,
which means that information previously learned in the
first network can be very well captured and transferred to
the other.

During process (1l), which occurs only in the presence
of external stimulation, the continual generation of
pseudo-associations by NET2 in response to the action of
the random generator was exactly the same as that in
NET1 during process (I). The external input-target pairs
from base B were concurrently trained with the internal
pseudo-input-pseudo-target pairs originating from NET2:
for each base B association, N pseudo-associations from
NET2 were conjointly trained. The upper graph in figure 5
shows, with R = 10 re-injections and N = 4 pseudo-items
pairs, the variation of the mean goodness related to the
hetero-associations from base A (old base) tested on NET1
during learning of the new base B by the same network.
For comparison, the lower graph shows the correspond-
ing old base goodness when no pseudo-rehearsal is used,
in fact for N = 0. Note that this curve, showing cata-
strophic forgetting, although related to an auto-hetero
associative network, is quite similar to that in figure 2,
which, however, relates to a simple hetero-associative
network. Graphs in figure 5 stop when the usual 0.1 learn-
ing criterion is reached on the new base B. As can easily
be seen on the upper graph, the retroactive interference is
dramatically reduced (catastrophic forgetting is com-
pletely suppressed) since the final mean goodness is close
to its initial level. The initial descent of the old base good-
ness corresponds to a restructuring of the NET1 connec-
tion weights, which have to adapt to both the new base
and the old structure. The number of cycles needed to
learn the new base may appear relatively important. How-
ever, if the contrasted correctness measure is used, tests
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Figure 5. Mean goodness of the old base as a function of the number
of training cycles of the new base.

Graphs (plotted for each set of ten cycles) stop when the new base
learning is completed and the full square refers to the initial goodness
of the old base before the new base training starts.

Upper graph: goodness variation with R = 10 re-injections of input
activity in the two networks and N = 4 pseudo associations per one
real external association concurrently trained in NET 1. Note that ret-
roactive interference is dramatically reduced since the final mean
goodness of the old base is close to its initial level.

Middle graphs: note the important enhancement of the old base
goodness between simulations performed without (R = 0) and with
(R = 10) reverberating networks, for the same N parameter value
(N=1).

Lower graph: catastrophic forgetting with no refreshing process.

performéd on the new base give 100 % correct responses
from cycle 210.

In order to show the effect of changing the R and N
parameters, two other simulations were performed, the
results also being represented in figure 5. The graph noted
(R =0; N =1) represents the old base goodness when the
two networks are not allowed to reverberate (i.e., zero re-
injection) and where there is only one pseudo-input-
pseudo-target pair originating from NET2 per one external
input-target pair during the new base training in NET1.
The main point to note is that the retroactive interference
is relatively high. Using the contrasted correctness meas-
ure, the rate of correct responses for the old base at the
end of learning the new base reaches only 5 % (i.e., one
correct response among 20). A second point is that learn-
ing the new base proves rather difficult since the final
number of cycles needed to reach the criterion is high.
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Moreover, other simulations with R = 0 showed that the
new base cannot be learned when N > 1.

It is worth mentioning that any simulation performed
with zero re-injection in the present model can be
expected to give results similar to those obtained with the
Robin’s method. When we applied the Robin’s procedure
(results not shown), we had to take a stored pseudo-base
of size 1 000 and one pseudo item pair per one real item
pair (N = 1) to obtain a goodness variation almost iden-
tical to that noted (R = 0; N = 1) in figure 5. This per-
formance is the best result possible when the Robins’
procedure was applied with other pseudo-base sizes and
other values for the N parameter. It is noticeable that this
best result, obtained using the cross-entropy error func-
tion, has not been reached with the classical quadratic
error function normally used in the Robins’ method, in
fact the new base could not be learned. More generally, it
appeared from pilot simulations performed on our exam-
ple of sequential learning task that the new base could not
be learned when using the quadratic error function what-
ever the refreshing method was.

To highlight the effect of re-injections on system per-
formance, a fourth simulation was run taking R = 10 and
N = 1. As can be seen in figure 5, in comparing the case
(R =0; N = 1) with the case (R=10; N = 1), where only re-
injections are added, the old base goodness is in this last
case much enhanced and learning of the new base is fast-
er. This comparison demonstrates clearly the crucial role
of neuron-like processes, reverberating from random stim-
ulations, in discovering the deep structure of information
distributively represented within network connectivity.

Conclusion

The reverberating process assumed to work within neural
networks is at the root of the efficiency of the proposed
pseudo-rehearsal mechanism minimizing retroactive
interference. The need for reverberating networks, to
greatly reduce forgetting of old hetero-associations when
new ones are learned, highlights a basic principle postu-
lating that hetero-associations have to be learned con-
jointly with auto-associations. This assumption, which
simply means that any input stimulus is also learned in
itself, seems likely from an ecological point of view. In the
model the re-injection process, which operates only on
auto-associative parts, permits the production of pseudo-
items reflecting also the deep structure of hetero-associa-
tions. The usefulness of such re-injection processes in
revealing the structure of learned information has already
been shown [18] in the field of connectionist models of
identification. It should be noted that the proposed rever-
berating process should not be confounded with recurrent
time-delay networks [19-21] where no auto-associations
are implemented and where recurrent activities are
mainly used in order to implement time delays for lear-
ning and reproducing temporal sequences.
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The dual-system approach, which is implemented here
according to a pure connectionist architecture, goes in the
same direction as a recent paper [11] where it is claimed,
on the basis of a detailed study on the behavior of con-
nectionist models and neurophysiological-psychological
data, that two complementary learning systems are nec-
essary (in fact, in the hippocampus and neocortex) for con-
solidation without catastrophic forgetting. However, the
proposed processes were described in general terms but
not in the framework of a neural network implementation.

Dual neural network processing, which in the present
note is achieved mainly to suppress retroactive interfer-
ence in sequential learning tasks, leads to an important
corollary. Indeed, this type of processing provides an orig-
inal but plausible means to ‘copy and paste’ a distributed
memory from one place in the brain to another, this infor-
mation transfer being achieved solely on the basis of ran-
dom stimulations. For simplification, the two networks
NET1 and NET2, between which information is trans-
ferred, were in fact considered as having the same struc-
ture. However, it is worth mentioning that this assumption
is in no way required for the reliability of the information
transfer. Two networks with different numbers of layers
and different hidden layer sizes would work as well,
which is essential for the generality of transport processes
between neural structures. The only restriction may arise
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